1.2 Access Methods

Files store information. When it is used, this information must be accessed
and read into computer memory. The information in the file can be accessed
in several ways. Some systems provide only one SGEESSVMEIRGd for files.
while others support many access methods, and choosing the right one for
a particular application is a major design problem.

11.2.1 Sequential Access

The simplest access method is sequential access. Information in the file is
processed in order, one record after the other. This mode of access is by far the
most common; for example, editors and compilers usually access files in this
fashion.

Reads and writes make up the bulk of the operations on a file. A read
operation—read.next () —reads the next portion of the file and automatically
advances a file pointer, which tracks the 1/O location. Similarly, the write
operation—uwrite.next () —appends to the end of the file and advances to the
end of the newly written material (the new end of file). Such a file can be reset
to the beginning, and on some systems, a program may be able to skip forward
or backward n records for some integer n—perhaps only for n = 1. Sequential
access, which is depicted in Figure 11.4, is based on a tape model of a file and
works as well on sequential-access devices as it does on random-access ones.

11.2.2 Direct Access

Another method is direct access (or relative access). Here, a file is made up
of fixed-length logical records that allow programs to read and write records
rapidly in no particular order. The direct-access method is based on a disk
model of a file, since disks allow random access to any file block. For direct



access, the file is viewed as a numbered sequence of blocks or records. Thus,
we may read block 14, then read block 53, and then write block 7. There are no
restrictions on the order of reading or writing for a direct-access file.

Direct-access files are of great use for immediate access to large amounts
of information. Databases are often of this type. When a query concerning a
particular subject arrives, we compute which block contains the answer and
then read that block directly to provide the desired information.

As a simple example, on an airline-reservation system, we might store all
the information about a particular flight (for example, flight 713) in the block
identified by the flight number. Thus, the number of available seats for flight
713 is stored in block 713 of the reservation file. To store information about a
larger set, such as people, we might compute a hash function on the people’s
names or search a small in-memory index to determine a block to read and
search.

For the direct-access method, the file operations must be modified to
include the block number as a parameter. Thus, we have read(n), where
n is the block number, rather than read next(), and write(n) rather
than write-next(). An alternative approach is to retain read-next() and
write_next(), as with sequential access, and to add an operation posi-
tion_file(n) where n is the block number. Then, to effect a read(n), we
would position file(n) and then read next ().

The block number provided by the user to the operating system is normally
a relative block number. A relative block number is an index relative to the
beginning of the file. Thus, the first relative block of the file is 0, the next is
1, and so on, even though the absolute disk address may be 14703 for the
first block and 3192 for the second. The use of relative block numbers allows
the operating system to decide where the file should be placed (called the
allocation problem, as we discuss in Chapter 12) and helps to prevent the user
from accessing portions of the file system that may not be part of her file. Some
systems start their relative block numbers at 0; others start at 1.

How, then, does the system satisfy a request for record N in a file? Assuming
we have a logical record length L, the request for record N is turned into an
[/0 request for L bytes starting at location L = (N) within the file (assuming the
first record is N = 0). Since logical records are of a fixed size, it is also easy to
read, write, or delete a record.

Not all operating systems support both sequential and direct access for
files. Some systems allow only sequential file access; others allow only direct
access. Some systems require that a file be defined as sequential or direct when
it is created. Such a file can be accessed only in a manner consistent with its
declaration. We can easily simulate sequential access on a direct-access file by
simply keeping a variable cp that defines our current position, as shown in
Figure 11.5. Simulating a direct-access file on a sequential-access file, however,
is extremely inefficient and clumsy.

11.2.3 Other Access Methods

Other access methods can be built on top of a direct-access method. These
methods generally involve the construction of an index for the file. The index,
like an index in the back of a book, contains pointers to the various blocks. To



11.3 Directory and Disk Structure 515

sequential access implementation for direct access
reset cp=0
read_next read cp;
p=cp+1
write_next write cp;
cp=cp +1;

Figure 11.5 Simulation of sequential access on a direct-access file.

find a record in the file, we first search the index and then use the pointer to
access the file directly and to find the desired record.

For example, a retail-price file might list the universal product codes (UPCs)
for items, with the associated prices. Each record consists of a 10-digit UPC and
a 6-digit price, for a 16-byte record. If our disk has 1,024 bytes per block, we
can store 64 records per block. A file of 120,000 records would occupy about
2,000 blocks (2 million bytes). By keeping the file sorted by UPC, we can define
an index consisting of the first UPC in each block. This index would have 2,000
entries of 10 digits each, or 20,000 bytes, and thus could be kept in memory. To
find the price of a particular item, we can make a binary search of the index.
From this search, we learn exactly which block contains the desired record and
access that block. This structure allows us to search a large file doing little 1/0.

With large files, the index file itself may become too large to be kept in
memory. One solution is to create an index for the index file. The primary
index file contains pointers to secondary index files, which point to the actual
data items.

For example, IBM’s indexed sequential-access method (ISAM) uses a small
master index that points to disk blocks of a secondary index. The secondary
index blocks point to the actual file blocks. The file is kept sorted on a defined
key. To find a particular item, we first make a binary search of the master index,
which provides the block number of the secondary index. This block is read
in, and again a binary search is used to find the block containing the desired
record. Finally, this block is searched sequentially. In this way, any record can
be located from its key by at most two direct-access reads. Figure 11.6 shows a
similar situation as implemented by VMS index and relative files.



